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Two-dimensional self-avoiding lattice chains with the attraction of monomers are studied by the MonteqYarlo 
method. A new version of the simulation technique is described. The dependence of the chain sizes, number of 
contacts and specific heat on the temperature and number of links are obtained and the existence of the 
collapse transition is proved. The precise determination of the 0-point, tricritical exponent vt and crossover 
exponent ~b based on the scaling treatment yielded: 0 = 1.54, v t = 0.59, q~ = 0.6. This is in good agreement with 
recent theoretical predictions and experimental data. The relation with early works is also discussed. 
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I N T R O D U C T I O N  

The practical and theoretical studies of isolated polymer 
chain conformations in two dimensions are interesting 
when related to the investigations of polymer monolayers, 
and adsorption phenomenona etc. 

A great number of theoretical works 1-11 have been 
devoted to the problem of the collapse of molecular coils 
in two dimensions. However, there is some discrepancy 
between the results of different authors. 

The existence of the critical 0-temperature in two 
dimensions (d = 2) as well as in three dimensions (d = 3) is 
generally now acknowledged. Above the 0-point mole- 
cular coils swell, and the mean-square of end-to-end 
d i s t a n c e  R 2 becomes proportional to N 3/2 (N is the 
number of links). Below the 0-point coils collapse into 
dense globules in which R 2 ~ N. This result follows 12 from 
the mean-field theory ~ 3. In three-dimensional space R 2 
N 6/5 for T>O, R 2 ~ N  2/3 for T<O, and R Z ~ N  at the 
0-point, i.e. chains behave as random coils and the 
excluded volume effects are practically compensated by 
the attractive forces between monomers,  if one neglects 
the logarithmic corrections. The behaviour of chains at 
the 0-point in two dimensional case, character of tempera- 
ture dependence of the sizes of globular and coil chains are 
still in the focus of discussion and require further 
investigation. 

There are several results of numerical experiments in 
the literature, obtained by different modifications of the 
Monte-Carlo method. These data are in good agreement 
with each other, but their interpretation is rather 
ambiguous, and depends on the theoretical concepts of 
the authors. 

In the present work we carry out the numerical 
simulation of two-dimensional chains on the square lattice 
taking into account the attraction of monomers.  The 
model and Monte-Carlo technique are fully described 
later. The aim of our work is to study the behaviour of 
two-dimensional chains in different conditions and to 
determine the critical exponents. We pay particular 
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attention to the adequate analysis of the numerical 
experiment and we show later that the correct deter- 
mination of the 0-point is a problem. 

M O D E L  

We use the well known Rosenbluthes version of the 
Monte-Carlo method iv. A conformation of the macro- 
molecule consisting of N + 1 monomers is represented by 
a random self-avoiding walk of N steps on the two- 
dimensional square lattice. The attraction of monomers is 
introduced, as it has been done in Refs 18-20. In order to 
increase the probability of the appearence of high- 
number-of-contacts conformations which make the 
major contribution to the partition function in the case of 
nonzero attractive energy, we use the following method. 
Assuming that the end of the walk, j-1 steps long, is in the 
lattice site (X, Y), let each of the neighbouring sites vacant 
for thej th step have a number Kj=  1,2 . . . . .  a i, where aj~<3 
is a total number of these sites. Each of these a t sites is, in 
turn, in contact with 0~<qkj~<3 occupmd s~tes. Gwmg 
priority to the sites with greater values of qkj, we shall pass 
to site Kj with probability: 

Pki = e*,,k, /'ki= ~j , pkj (1) 

!i- i 
where ff is some positive constant which we name the 
construction potential (com. 21). The ensembles with 
various q* have been constructed. The method of cal- 
culation of different average values, taking into account 
the value of ~, and method of selection of the opt imum 
value of ¢ are described later. 

a) may, sometimes, be zero. In this case, the chain 
should be rejected, and should be included only in the 
ensembles of chains consisting of N ~<j-  1 links. In the 
two dimensional model such a marked procedure leads to 
the elimination of chains. 

The situation may be improved if we examine two steps 
ahead and forbid walks leading to the sites for which 
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qk = 3 (i.e. let Pk = 0), since such walks will immediately 
le~d to the death of the chain on the following step. But 
large elimination of chains is still preserved. The data, 
obtained for ~ = 0.3, show that the probability for the 19 
links chains to grow up to 199 links is approximately 0.16. 
The probability of passing the next twenty steps gradually 
diminishes from 0.9 for N =  19 to 0.8 for N =  179. 

These difficulties can be ignored if we use ensembles of 
a special type of walks which we shall name infinitely- 
prolonging walks (IPW's), defined as follows: the end of 
such a walk cannot locate itself in a region boarded by 
previous links of the chain, so that there is no path 
leading out of this region for a self-avoiding walk. The N- 
long IPW's represent a rather poor subset of the whole set 
of all arbitrary self-avoiding walks (SAW's) of the same 
length. Apparently, the ratio of the number of all IPW's of 
the length N to the number of all SAW's of the same length 
tends to zero when N tends to infinity. Therefore the 
mean-square of end-to-end distance R 2, the mean square 
of radius of gyration S z, the mean energy per monomer U, 
calculated for SAW and IPW ensembles, may be different. 
We dwell, mainly, upon the study of IPW ensembles. The 
comparison with the data for the ensemble of 80000 
SAW's (see Table 1) in the interval of temperatures close to 
the 0-point, is given in Table 4, see also Fiyures 6, 7 and 
Table 6. 

The algorithm for construction of an IPW is based on 
computation of the angle c~j between the vector of the last 
j th step and the vector of the first. If the jth link collides 
with the kth one, the value ~i -:ok is to be examined, and if 
it is positive the non-normalized probability of the left 
turn p~j+, (see equation (1)) should be equal to 0. On the 
contrary, if :~i - C~k < 0, the right turn should be forbidden. 
It is obvious, that ~j - ~, cannot be equal to zero. Inspite of 
the fact that the computer program realizing such an 
algorithm is rather complicated, it turns out to be twice as 
effective as the ordinary program generating all SAW's. At 
larger N its relative efficiency is even higher, because the 
computation time in the case of IPW's depends on N 
linearly (all the chains grow up to the given value of N), 
while in the case of SAW's~xponen t ia ly ,  as their 
probability to grow up to the given value is proportional 
to  e ;%. 

M E T H O D  OF ENSEMBLE AVERAGING 

In order to evaluate a correct ensemble average the weight 
N - ") factor Wq=l/(3 "Pq) should be used 17, where Pq is the 

Table 1 List of ensembles over which the averaging was carried out. 
Ensembles 1 IV consist of IPW's, ensemble VII consists of SAW's; 
the maximal chain length in each ensemble is 199 

No. W M/10 3 qb 

I 0.0 80 0.2 (0.1)-0.6 
I |  0.1 60 0.2 (0.1 ~0.6 
III 0.25 75 0.6(~(0.05~0.80 
IV 0.3 60 0.60-(0.025)-0.70 
V 0.4 140 0.70q0.05~0.90 
V1 0.6 60 0.70 (0.05)q3.90 
VII 0.3 80 0.60-(0.025)-0.675 

W-construction potential 
M-total number  of chains in the ensemble 
O-attractive energy of monomers  

probability of a given qth walk: 

N N et~qkiq 
Pq = H Pkjq = H ¢ r , ,  (2) 

j = l  j = l  E e°t/ijq 

ijq = i 

In this formula Kjq= 1, 2, ajq are the numbers of sites 
which were chosen on the j th  step of the qth walk. The 
numerical factor 3 -N+2 prevents too large values of Wq. 
The ensemble average is calculated according to the 
formula: 

' ~  Vqfq fq = Wq e ~"q (3) ( " 5 -  ' 

w h e r e  Uq is the value of the averaging quantity for qth 
chain of the ensemble, M is the total number of chains in 
the ensemble, fq is the partition function ofqth walk, Wq is 
the Rosenbluthes factor of qth chain, O =  - e / k T  is the 
energy of attraction between monomers situated in the 
nearest-neighbour lattice sites, qq ~-E~'= l qkjq is the total 
number of contacts in the qth walk. 

We determined the mean-square radius of gyration 
($2),  the mean square end-to-end distance (R25, the 
mean energy per m o n o m e r ( U )  = ( q )  c~/(U + 1), the mean 
specific heat per monomer ( C / =~2/(N + 1)((r/2) - ( q )  2). 
(Wherever it is possible, the ( ) '  brackets of mean values 
will be omitted. E.g. we will write R 2 instead o f ( R 2 ) . )  

The data were obtained for several ensembles of 60 000- 
140000 chains N = 1 9 9  links long with different con- 
struction potentials ft. For each ensemble, the averaging 
was carried out for 5 different interaction energies ~b (see 
Table 1). All the quantities were being averaged in the 
process of generating of chains, as they became 19, 39 . . . . .  
199 links long. Thus, for each ensemble of 199-1ink chains, 
9 ensembles of shorter chains were obtained, each being 
the initial part ofa  coresponding chain of 199 links. These 
ensembles of different lengths N cannot be considered as 
statistically independent. However, the character of the 
dependence of the chain properties on N can be observed 
more easily for such a set of ensembles. The variance of 
averages is computed over 4 10 sub-ensembles consisting 
of 10000 20000 chains. The spread of values of the 
averages computed in different ensembles do not exceed 
the bounds of the confidence interval evaluated by sub- 
ensembles of a single ensemble. 

O P T I M U M  VALUE OF THE CONSTRUCTION 
POTENTIAL 

The mathematical probability of any ensemble average as 
well as the probability of partition function fq is 
independent of the value of qJ: 

E( fq)=E Pqfq = E  Pqwq e ~'~ =3 2 N • e4,q 
q q q 

where the sum is taken over all chains of the length N. But 
the variance V(fq) depends on ~k and can be sufficiently 
decreased by its choice: 

Vffqq)=3 2-N ~ Wq e 2~h'tq--E2(fq) 
q 

Instead of calculating the variance we calculated the 
effective number of chains: 

M 

Meff= E fq/max {j[~ 1 
q = l  q 

yielding a sufficient contribution to the partition function. 
Men also depends on q~. As it follows from the examination 
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of short chains with 4 links, it can be asserted that in order 
to attain the highest M~,, one should take ~ ~< O. It is easy 
to show that the optimum value of construction potential 
in the case of sufficiently large M is given by: 

• O, 
~kopt( )lN=4={ln2, O>~ln20<ln2~0"69 

The dependence of M~ on • for different ~ values for the 
ensembles of 6000019- and 199-1inks chains is shown in 
Figure la. The families of curves, corresponding to 
different values of ~, have the envelopes with maximum at 
0=0.54).65, which drifts to the fight with the increase of 
N. The existence of a bell-form envelope suggests that the 
introduction of the construction potential ~ is most 
effective near the 0-point, O0~0.65. This result has 
something in common with Ref. 18, where the highest 
accuracy has also been marked in the vicinity of 0-point. 
The value of ~bop,(O) is shown in Figure lb. 
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N= 199 
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Figure 2 S2/N vs. l/O= - kT/e for various values of N (figures on the 
curves), obtained for IPW's on the grounds of our numerical experiment 
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Figure 1 (a) The effective number of chains Men" vs. q) for the ensembles 
of 60000 chains of N = 19 and 199 links, generated with different values 
of the construction potential qL The values of W for curves 14~ are 
bY=0.00, ~P=0.10, W=0.25, W=0.30, ~P=0.4 and W=0.60; (b) The 
influence of the attractive energy • on the optimum value of 
construction potential Wopt for different chain lengthes N. The curve for 
N=4 have been obtained theoretically 

D E P E N D E N C E  OF THE CHAIN SIZES ON N 
AND z 

The results of the numerical computation of the chain-size 
dependence on the temperature 1/O = - k  Tie are given in 
Figure 2. A number of parameters are determined from 
these results: (1) the location of the 0-point; (2) exponent vt 
specifying the molecular-mass dependence of the size at 
the 0-point S0 2--~Nzv'; (3) the exponents specifying the 
molecular-mass and temperature dependences in the 
extended coil in the good solvent (index +), and in the 
globular state ( index-) .  It should be emphasized that the 
situation is more complicated than in the 3-dimensional 
case, where the random-coil behaviour of chains at the 0- 
point is already known. In the two-dimensional case one 
should also proceed with the appropriate theoretical 
premises. 

The most general expression for the chain sizes is 
yielded by the scaling theory i, according to which: 

S 2 .,. N2~f(N~z) (4) 

where vt is the tricritical exponent specifying the chain 
sizes in the critical 0-region, q~ is the cross-over exponent, 
z=(T-O)/O is the reduced temperature and f(x) is a 
function having the following asymptotics: 

(x"+, x ~ + oo 
f(x)=gUxl_,_ ' x - - * - ~  (5) 

and turning into 1 for x = 0 .  
The exponents/~ + and p_ are related to vt, and 4~ by 

- -  2V t 
/ ~ + -  

2v, -  1 
# _  - (6) q~ 

which ensure the well known conditions 69: 

S2+~N 3/2, Sz_..~N 

As to the numerical values of exponents % ~0, p +, p_, the 
theoretical data available in literature are contradictory. 
These data are sumarized in Table 2. (It is to be noted that 
the formulae of Table 2 give the main terms of asymptotics 
for N-- .  go and z,~ 1, the proportionality factors being 
omitted). 
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_~z 
N 

N--~oo 

. t / N: I03 / 

/ ~  N=IO2 

a 
I I I I I 

-i.0 -0 .5  O 0.5 1.0 r 

Figure 3 S2/N vs .  r for different theories, according to formulae of the 
Table 2. (The curves are smoothed): (a) the mean-field theory ~ 2,t 3; (b) the 
theory of Khohlov~°; (c) the scaling theory in which ~o and v t are close to 
those obtained in Ref. 4 

Table 2 Power  dependences of the size of two-dimensional  chain 

No. $2+ S~ S 2_ Ref. 

1 N 3/2T1/2 N 4'3 Nz - l 12,13 
2 N 3/2 N 3:2 N z -  t 10 
3 N3/2T °'77 N l ' ° l ]  NI  "-° ' °17 1,4 
4 N3/2z °'5 N l ' l °  NT -° '12 11 

In the first line of  Table 2 the results ob ta ined  in Ref. 
12 within the mean-f ield a p p r o x i m a t i o n  13 are shown. 
They fit equa t ions  (4)-(6) with v, = 2/3 and ~o = 1 - v, = 1/3. 
The  results placed in the second line were ob ta ined  in Ref. 
10 (see discussion in Ref. 12) and  are  based  on the theory  of  
the coi l -g lobula  t ransi t ion.  The  co r respond ing  values of 
exponents  are  v t = 3/4 and  ~o = 1/2. Final ly ,  in the two last 
lines, there are re la t ionships ,  based  on the direct  
ca lcula t ion of  v t and  q) with the help of  e-expansion 
methods ,  which yield vt=0.5055,  ~o=0.63544, and  after 
the modif ica t ion  of  the theory  (the 0-point  has been 
redefined as the t empera tu re  of  vanishing of  the second 
virial coefficient) yield vt=0.55,  ~p=0.8. The sketches of  
the reduced size versus r educed- t empera tu re  dependence  
of  Table 2 are  p lo t ted  in Figure 3 (a, b, c). 
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The visual comparison of these curves with each other 
and with the experimental data of Fioure 2 shows that the 
data can be made to agree with each plot of Figure 3 
(a,b,c), by varying the location of the 0-point. In this way, 
we start the analysis of our data by determination of the 0- 
point, using equation (4) as an ansatz. 

DETERMINATION OF THE 0-POINT AND THE 
EXPONENT vt 

Figure 4 illustrates the molecular-mass dependence of the 
reduced chain sizes S 2 and R 2. The computation errors 
are given in Table 3. The comparison of the data for IPW's 
and SAW's is given in Table 4. The straight lines of Figure 
4 correspond to the ideal random-walk chains without 
immediate reversals on the square lattice. The well 

known formulae of conformational statistics 23,24 for such 
chains give: 

S 2/S = 1/3 - 5/(12N) + 0( 1/N 2 ) 

R2/N = 2 -  3(1 - 1/a N)/(2N) (7) 

For two-dimensional chains, the value of S2/N is inversely- 
proportional to the chain density which appears to be 
finite for random chains even when N---* ~ .  The limiting 
value of density for a completely compact globular chain 
is S2/N=I/(2~z) when N ~ .  As can be seen from 
Figure 4, the chain sizes at high energies • (O~>0.75-0.8) 
appear to be not larger than those of random-coil. The 
chain sizes per link diminish with the increasing N, i.e. the 
density increase with chain length. (In several cases the 
sizes per link pass through the maximum with 
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Figure4 SZ/N vs. N for IPW's (a) and RZ/N vs. N for IPW's and SAW's 
(b) for various energies O. The dashed line is the value for the random- 
coil chain. (O) IPW;  (+ )  SAW 
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increasing N). Obviously this situation corresponds to the 
conditions below the 0-point (~ > O0). 

For  more detailed study, we plotted the log-log 
molecular-mass dependence of chain sizes (see Figure 5). 
The slopes of these curves calculated according to the 
formulae In X 2= ?X In N + Bx, where X = S; R, are shown 

Table 3 The mean square radius of gyration ($2}, its coefficient of 
variation 

( 'Mi~_l' \1/2 t/ I M / M  ~ \ 

and effective number of chains M ~  in various ensembles. The length of 
each chain is N =  199 links, M-total number of chains in the ensembles, 
M~-the number of chains in the subensembles that were used for 
calculation of a. The averaging over ith subensemble is marked by index 
i below the angle brackets 

Ensemble 1 Ensemble Ill Ensemble V 

q~=0.0, M=80000,  W=0.25, M=75000,  q~=0.4, M =  140000 
M 1 = 20 000 M 1 = 15 000 M l = 10000 

t~ S 2 o'(S 2) Meg S 2 o'{S 2) Meg S 2 cr(S 2) Meg 

0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

263 5% 14 
233 2% 43 
200.3 1% 274 
162.2 0.3% 614 
120.8 0.8% 99 122.0 0.3% 1858 

88.0 0.40/0 282 88.7 0.2% 691 
66.2 1.4% 29 66.7 0.4% 101 

55.2 1.4% 12 

in Figures 6, 7 and in Table 5. The linear representations of 
the dependences in question were calculated by the least- 
square method for groups of several neighbour points, the 
values of the slopes 7x and terms Bx being assigned to the 
point /q  which is the geometric mean of chain lengths for 
each group. 

The data of Figures 6 and 7 and Table 5 were obtained for 
groups of three and five points. The analysis of the curves 
in Figure 5 has also been carried out, using more the 
general representation In X 2 = 7x ln(N + x) + Bx. The intro- 
duction of the correction term x, suggested by the 
structure of equation (7), does not practically influence the 
main conclusions. For x = + 1, the dependence of 7x vs. N 
within the interval of ~b = 0.6-0.7 becomes non-monotone. 
The root-mean-square errors of the determined values of 
7s are given in Table 5. They are obtained by calculating 

Table 4 Comparison of R 2, S 2, U for IPW- and SAW-ensembles 
(ensembles IV and VII of Table 1, W = 0.3). The last nonzero digit in the 
values of R 2, S 2, U is a significant one 

R 2 S 2 U 

N • 0.6 0.65 0.7 0.6 0.65 0.7 0.6 0.65 0.7 

19 IPW 40.6 38.~ 36.1 6.80 6.56 6.33 0.172 0.197 0.222 
SAW 40.3 38.0 35.8 6.76 6.52 6.29 0.174 0.197 0.222 

99 IPW 310 290 230 51 46 41 0.245 0.286 0.332 
SAW 300 260 220 50 45 40 0.247 0.289 0.333 

199 IPW 760 620 500 122 104 88 0.262 0.310 0.362 
SAW 720 580 470 120 101 86 0.263 0.311 0.362 
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the variance of ~ values for 15 sub-ensembles of M =  
15 000 chains which were the used larger ensembles (see 
the formula in the caption of Table 5). The errors for y~ are 
always less than those for YR. 

It should be mentioned that, when fitting the lines by 
the least-square method, we calculated the standard 
deviation of 'experimental' points from its linear represen- 
tation for the groups of each five points. For the ensembles 
ofM = 60 x 103 IPW's, this value was 5 x 10- 3 _ 2 x 10- 4, 
being of the same order for S and R and attaining its 
minimum at q~ = 0.65. The dependences reproduced on 
Figure 5 are practically linear at such energy. 

The precise determination of the 0-point is based on the 

study of the dependences of slopes Ys and 7R on N. Taking 
logarithms of both parts of equation (4), we obtain: 

In S 2 = (2vt + q~#(N~v)) In N + p(N%) In • + C 

where p(x) = In f(x)/ln x is a limited function which tends 
to its limiting values _+p_+ with x ~  _+ ~ .  Assuming that 
p(x) has only a single root x=0,  i.e. T=O, one can 
conclude that, for long chains, ys(N) chains have to 
increase above the 0-point, diminish below it and be 
constant for T= 0. 

As it can be seen from Figures 5 and 6, the values of Yx 
for q~ < 0.65 increase with the increase of N. This means 
that the macromolecules become more extended. On the 
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Figure 7 The influence of N on the coefficients Bs for IPW's (a) and BR 
for (©) IPW's and (+)  SAW's (b) at different values of@ 
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Table 5 The values of the slope 7s computed for t he groups of 5 points corresponding to the values of N placed in the left column. The errors are given in 
the brackets, e.g. 0.933 (15) means 0.933+0.015 

Values of N /V @ 0.5 0.6 0.625 0.65 0.675 0.7 0.75 0.8 

19-(20)-99 51 1.300(2) 1.220(1) 1.198(2) 1.177(2) 1.155(2) 1.132(2) 1.090(3) 1.051(4) 
39-(20)-119 73 1.321(4) 1.227(2) 1.201(2) 1.174(2) 1.149(2) 1.121(2) 1.070(5) 1.024(8) 
59-(20)-139 95 1.331(4) 1.235(4) 1.206(5) 1.175(3) 1.145(4) 1.113(5) 1.056(7) 1.007(10) 
79-(20)-159 116 1.336(6) 1.237(6) 1.208(6) 1.173(5) 1.139(5) 1.110(7) 1.045(10) 0.993(15) 
99-(20)-179 137 1.344(8) 1.243(8) 1.210(6) 1.177(5) 1.138(6) 1.104(9) 1.038(15) 0.990(20) 

119-(20)-199 157 1.354(10) 1.248(10) 1.216(10) 1.175(6) 1.137(10) 1.095(10) 1.032(20) 0.990(30) 

other hand, when @ > 0.65, the values of 7x decrease with 
the growth of N, tending to the value )'x = 1 for globular 
structures (for @ >/0.8, the value of 7R appears to be less 
than 1, but for longer chains, with N---~ ~ ,  it must 
approach unity from below). 

When @=0.65, the values of ~s and ~R preserve the 
same value inside the whole region of observed N values. 
This allows us to adopt  the value of @ =@0 = 0.65 (0 = 
1/@ 0 = 1.54) as the 0-point, and the value OfTx = 2v t = 1.175 
as the corresponding tricritical exponent. 

The detailed data concerning the values of quantity @0 
and tricritical exponent 7x = 2v, are given in Table 6, in 
which a comparison is also made between the values, 
obtained for molecular mass dependences of $2 and R2 for 
IPW- and SAW-ensembles. A good agreement of these 
values is demonstrated. 

In summary,  we can assert that with a high degree of 
reliability that @0=0.65+0.05, i.e. 0=1 /@=1.55+0 .15 ,  
and 2v,= 1.17+0.07. 

The other characteristics of a chain will now be 
discussed, which allow an estimate of the value of @0. The 
thermodynamical characteristics of the system are 
represented in Figures 8 and 9. The dependences of the 
reduced mean energy (the number of contacts) per 
monomer  U/O versus 1/@ and N are rather smooth both 
for IPW's  and for SAW's (see Table 3 and Figure 8). 
Unfortunately, we have not been able to investigate in the 
region of higher values of@, where the relative energy U/@ 
becomes independent of the temperature 1/@. 

The temperature dependence of C, the specific heat, 
shown in Figure 9 for the chains of 199 and 100 segments 
seems to have a faintly marked maximum, biased from the 
above-determined value of 0 towards the region of lower 
temperatures. However, the error of determination of the 
specific heat is very high at large @ values, and reaches 
50~o. Therefore, the results obtained do not contradict the 
previous one. It  should be noted that at large values of @ 
the effective number of chains in the ensemble falls to the 
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Table 6 Results of determination of q~o and 2vt according to the slopes 
of curves In S2(ln N) and In R2(ln N) for IPW's and SAW's 

~b0 2vt 

S 2 R 2 S 2 R 2 

IPW's 0.65+0.01 0.64+0.02 1.175__ 0.005 1.20_+0.02 
SAW's 0.65_+0.01 0.65_+0.02 1.170_+0.005 1.165+0.02 

o.+ 
' ,X 

0.5 \X q ~ K ~  

o.4 "X 

0.2 I ~ 
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O.l I 
i I i I i 

O.~On, I 0 2 3 4 
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Figure 8 The reduced mean energy per monomer U/O vs. 1/~ for 
various chain lengths N. (The data for IPW's and SAW's coincide). The 
ratio of number of contacts to N in the limit of 1/*--+0 plotted by the 
dashed lines 

DETERMINATION OF THE CROSS-OVER 
EXPONENT ~9 

In order to determine tp we use the scaling expression 
equation (4), according to which: 

S2/N 2v, ,,~f(N~z) 

Hence, if one selects from the available data the points, for 
which the quantity S2/N 2" is constant, the value of N~r 
must also be constant at these points. In other words, 
one can expect the level curves (lines of fixed values) of 
function F = - In S 2 + 2vt In N to be the straight lines on 
the In T - In N plane, these lines being determined by the 
relationship: 

In r = K - ~0 In N (8) 

where K is expressed by the corresponding value of 
function F. Let us dwell on the definition of the reduced 
temperature T. The temperature in the computer experi- 
ment is simulated by the quantity 1 / ~ = - k T / e ,  which 

o4  
I+  

0.3 

0 2 1  III 

OA I I 

0.0 I I 
I 0 

# 

I 
2 

I /~  
3 4 

value of Men~ 10, even if the total number of chains in the 
ensemble M = 140 000. That is why some unique mostly 
tightly coiled conformations (of a spiral type, perhaps), 
may cause tremendous jumps of the average specific heat. 
Unfortunately, we are still not able to explain the effect of 
the non-monotonic dependence of C vs. N (see Figure 9b), 
which takes place at different values of • including those 
in the vicinity of O0, where the spread of C is not large, due 
to Me~ being rather high. As can be seen from Figure 9b, 
the deviations of C(N) from smooth curve have different 
signs for IPW's and SAW's. 

Figure 10 shows the dependence of the ratio of R2/S 2 vs. 
N for various values of~,  near to ~0. This ratio appears to 
be sensitive to the type of ensemble chosen (IPW or SAW). 
This can be explained by the fact that the probability of 
the chain end to enter into the coil is less for IPW than for 
SAW. The ratio R2/S 2 characterizes the form of the coil, 
so the value ofO =~1,  at which this ratio has the random- 
coil value R2/S 2 = 6, is of some interest. It can be seen from 
Figure 10 that the ratio diminishes with the increase of 
(at any fixed N). Value ~1 is equal to 0.625-1-0.025 and 
0.60 +0.025 for IPW and SAW-ensembles, respectively. 

The other characteristic value of • is value 02, 
corresponding to the change of the sign of molecular-mass 
dependence of the ratio R2/S 2, increasing with N for 
q~ <q~2 and decreasing with N for ~ > ~ 2 .  ~2 is equal to 
0.7___0.025 for IPW's and 0.65+__0.25 for SAW's. The 
closeness of ~ and ~2 to q)0 confirms the correctness of 
the procedures of the 0-point determination. 
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The specific heat C vs. 1/(D in various ensembles of IPW's (a). 
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Specific heat vs. chain length length N at q~ = 0.7 for various ensembles of 
IPW's and SAW's (b). The Roman numerals are the numbers of 
ensembles in Table 1. (O) III; (A) IV; (O) V; ([~) VI; (+)  VII 
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The variations of 2v t exhibit themselves in an analogous 
way. For • > O 0 the slopes of the level curves increase with 
increases in 2vt; but for 0 o > 0  the opposite occurs. 
Therefore, if 2v t increases by 0.001, the slopes of lines with 
F1=40,  and F 1 =8 0  increase by 0.02 and 0.006 
respectively, and the slopes of lines with F t = - 40, and F~ 
= - 80 decrease by a similar value. Different signs of the 
correction on different sides of the 0-point do not allow 
elimination of the difference in the slopes of lines with F~ 
= + 40 and F t = + 80 as plotted in Figure II (the slopes 
are 0.66--0.70 and 0.56-0.61). The best agreement between 
the slopes is given by the values ofO 0 and 2v t chosen when 
constructing the plot of Figure 1 I. As a whole, taking into 
account some uncertainty in the calculation ofq~, one can 
affirm with sufficient reliability that the value of ~o lies 
between 0.5 and 0.7. 

I I 
IO0 2OO 

N 

Figure 10 In (R2/S 2 ) vs.  N for various values of O in the ensembles of 
1PW's (IV) and SAW's (VII), that have been generated for q~=0.3. 
( + - - + )  VII; (O----C)) IV 

varies in the broad interval. (The case of • = 0  corres- 
ponds to %--* ~) .  On the other hand, it is always assumed 
in scaling relations like equation (4) that z is a small value, 
undoubtedly, ~ < 1. In order to satisfy this condition, it is 
reasonable to define r as: 

I T s 0  - • 0 < 0 0  
= 1 O 0 ,  

T =  

. . . .  ~- ,  0 > 0 0  

F t = [2v t In N - In S 2 - The level-curves of function 
1.58] x 10 3, plotted on the In N - In T coordinate plane for 
2v t = 1.176, O0 = 0.65 are shown in Figure 11. The series of 
points, corresponding to the values of • = 0.5, 0.6, 0.625 
(open circles) and • = 0.675, 0.70, 0.75 (closed circles) for 
all chain lengths from 19 to 199, are plotted, and the 
corresponding values of function Fa are marked near the 
points. The value 1.580 is subtracted in order to change 
the sign of the value of F 1, when crossing the 0-point. 

The straight lines, which are the level curves of F1, are 
constructed of points determined by interpolation. 

The slopes of lines are (from above to below) -0.59,  
-0.65,  -0 .61,  -0 .70  ( 0 < 0 0  broken lines) and -0.60,  
- 0.56, - 0.63, - 0.66 (O > O0, solid lines). These values 
must tend to the crossover exponent -q~ when N--*~ 
and T---,0, that corresponds to the right low corner of 
Figure 11, where the lines with F =  - 8 0  and 80 with the 
slopes of -0 .61 and -0.56,  respectively, are passing. 

The analysis shows that the slopes of level-lines depend 
strongly on the adopted values of q50 and 2vt. The slight 
change of O0 leads to the great change of In z in the region 
of small z (the lower part of the plot) and exerts almost no 
influence at large values of r (upper part of the plot). This 
leads to the change of slopes of the level curves: the 
increase of O0 by 0.001 only increases the slope of the level 
curves by 0.02 at • > O0 and decreases it by the same value 
at 0 < 0 o .  

DISCUSSION 

The values obtained for (I)0=0.65, vt=0.588 and tp=0.6 
allow us to plot all the data of Figure 2 on the 
In (N2V'/S2)-ln (TN *) coordinate plane (Figure 12), 
according to equations (4) and (5). As shown in Fioure 12 
all available data lie well on two branches of scaling 
dependence. 

The branch corresponding to 0 < 0 o  (i.e. the region 
above the 0-point) approaches the linear asymptote II 

InN 
4-- 

3-- 

° : 
-391 0 281 " -I76/0 "144 -70//0U73 
-368 o 261 • FI29o el36 /76'Toe68 

-345o 239 • /~20o ..2, / /-6. o.6. 
-3,2o 2,4. / /  -,08/o . l l 2 / /  -54o.54 
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Figure II  The values of function F 1 = [ 2 v t l n N - l n S  2-1.580] x 103, 
plotted on the plane (In N, In T). The values of 2vt and *0 are 2vt = 1.176, 
O0 = 0.65. The horizontal series of points, plotted for t he values of N from 
N = 19 to N = 199 with the step 20, correspond (from above to below) to 
the following values of q~=0.5, 0.6, 0.625 (O) and ~=0 .75 ,  0.7, 
0.675 (0) .  The straight lines connect the points with the equal 
values of F 1. (If there were not  enough points, we made linear 
interpolation). For ~ < ~ 0  these lines ( - - - )  correspond to the values 
of F1 = - 158, - 108, - 8 0 ,  - 4 0  and have the slopes - ~ o =  -0 .59,  
-0 .65 ,  -0 .61 ,  - 0 . 7 0  (from above to below). For ~>~b 0 ( ) F 1 

168, 80, 70, 40, - (p  = -0 .60 ,  -0 .56 ,  0.63, -0.66.  This legend and the 
discussion in the text correspond to the plot, turned 90 ° clockwise 
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Figure 12 The summarizing scaling plot of In (N2vt/S 2) vs. In (zNe) 
above the 0-point (lower branch) and below the 0-point (upper branch). 
The values of 2vt, ~b0, ~p are taken as follows 2vt = 1.176, qS0 = 0.65, tp = 0.6. 
The slopes of line I and II are #_ = 0.29 and - #  + = - 0.54 respectively. 
Line I crosses the ordinate axis at ln(2n)~ 1.84. Points correspond to 
different • (as indicated) 

with the slope - # +  = -0.54, where the value of #÷ is 
determined by equation (6) for the value of v t found in the 
above. When O > O  0 (below the 0-point) equation (6) 
yields /z_ =0.29, which specifies the slope of the 
asymptotic line I in Figure 12. 

The position of this line can easily be determined by the 
following simple procedure. At very large attractive 
energies • when z ~, 1 all the chains must assume the most 
dense conformation with the gyration radius $2= N/2rc. 
Hence, the equation of line I in Figure 12 can be written as 
y=#_x+ln2n,~O.29x+l.84.  As it is seen from Figure 
12 all the points of the branch t9 > O0 lie under line I. (The 
sizes of the chains below the 0-point are larger than 
follow from the scaling relations). In the interval of values 
of • = 0.8-0.9, the slope of the branch is steeper than 
slope #_ of line I. The corresponding values of 7s and 7r 
plotted in Figure 6 are less than 1 for these energies. As a 
whole, the deviation of the branch slope from the 
asymptotical one is not large. 

Thus, our data contradict the conclusions of early 
theoretical works, based on the renormalization group 
approach TM, according to which the chains near the 0- 
point (d = 2) are random, i.e., the exponent 2vt is near to 
unity and, respectively, the exponent #_ is near to zero. 
The value obtained for 2v t appears to be intermediate 
between the values of Refs 1 and 4, and the values yielded 
by the approach of the meanfield theory. At the same time, 
the cross-over exponent ~o is close to one computed in the 
works 1,4. 

After our work was finished, Kholodenko and Freed ~ 
have shown that the modification of the renormalization- 
group approach yielded the new values of the exponents vt 
and tp. It appears that the value ofvt obtained in our paper, 
is close to these results, and the value of tp is also similar. 

As mentioned in the introduction, the calculations of 
conformations of the model lattice chains have been 
carried out previously, the most detailed being the work of 

Baumg/irtner 14. The comparison shows the proximity of 
our results and the numerical data of the work 14, whereas 
the conclusions of both works are opposing. Baumg/irtner 
proceeds from the validity of the theoretical values of 
critical exponents 1'4, analysing the numerical experiment 
on their grounds. We consider that our method of 
analysing the computer experiment is more reliable. 

It should be mentioned that our results agree with the 
experimental data of Ref. 25, in which the value of vt = 0.56 
have been obtained for poly(methyl methacrylate), 
adsorbed on the water surface at t = 16.5°C, that is close to 
0-conditions. 

Notes added in proof 
(1) Recently a new self-avoiding walk named indefinitely 
growing (IGSAW) has been introduced. (Kremer, K. and 
Lyklema, J. W. J. Phys. A:Math. Gen. 1985, 18, 1515- 
1531.) The method of constructing IGSAW is the same 
as that for IPW. The only difference is that the partition 
function of IGSAW is calculated without the 
Rosenbluth's weight w. (Truly kinetic model). 
(2) The careful analysis shows that the effect of non- 
monotonic dependence of C vs. N (see Figure 9b) is an 
artifact of the computer rounding errors and can be 
removed by a slight modification of the routine. 
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